Epsilon Program
normalize EE_A(A_A_A) norm EE_A(A) abbreviate EE_{E(ε(0)×(1))}(E(ε(0)×(1))+EE_{E(ε([E(ε(0)×(1))])×(1))}(0)) abbr EE_{E(ε(0)×(1))}(E(ε(0)×(1))+E(ε(0)×(1))+E(ε([E(ε(0)×(1))])×(1))) lessThan EE_A(0) EE_A(EE_A(0)+EE_A(0)) < EE_A(A+EE_{A+A}(1)) EE_A(A+E(ε([A])×(EE_{A+A}(0)+1))) lessThanOrEqual EE_A(A+A+EE_{E(ε([A+A]))}(0)) EE_A(A+A+E(ε([A]))) <= EE_A(A+EE_{A+A}(1)) EE_A(A+EE_{A+A}(1)) expand EE_A(EE_{E(ε(0)+ε([A]))}(0)+A) 1 expand EE_A(A+EE_{E(ε([A]))}(0)) 1,1,0 inOT EE_A(A+A) 3
Abbreviate:
Details:
Commands:
normalize/norm
normalize X
Normalizes X, is not affected by Abbreviate option
abbreviate/abbr
abbreviate X
Abbreviates X, is not affected by Abbreviate option
lessThan/<
lessThan X Y
Judges whether X<Y
lessThanOrEqual/<=
lessThanOrEqual X Y
Judges whether X≤Y
inT
inT X
Judges whether X∈T
inPT
inPT X
Judges whether X∈PT
inAT
inAT X
Judges whether X∈AT
inAAT
inAAT X
Judges whether X∈AAT
inRT
inRT X
Judges whether X∈RT
inPRT
inPRT X
Judges whether X∈PRT
inRPT
inRPT X
Judges whether X∈RPT
inPAT
inPAT X
Judges whether X∈PAT
expand
expand X n0 [n1 n2 ...]
Calculates X[n0][n1][n2]...
inOT
inOT X [n]
Judges whether X∈OT while limiting up to n-th element of fundamental sequence. n defaults to 3.
Implementation of
ε関数 ver ε.0.1.0
by Jason (Retrieved 2020/12/27)
Last updated: 2021/11/15