Random calculations in the Psi's Letter Notation

Definition: Link

\(\color{white}{=}\text{G}2.892374\)
\(=\text{F}_27.8050196359\)
\(=\text{F}\text{E}_76.3829234487\)
\(=\text{F}\text{E}_62415035.1086779060\)
\(=\text{F}\text{E}_52.6003697704\times10^{2415035}\)
\(=\text{G}2\text{-}7\text{-}6\text{-}2415035\text{-}26003697704\)
\(=10\uparrow\uparrow(10\uparrow)^5(2.6003697704\times10^{2415035})\)

\(\color{white}{=}\text{J}3.2952923\)
\(=3.2952923|10\)
\(=\text{H}3.2168473736\)
\(=\text{G}_31.6475832709\)
\(=\text{G}_2\text{F}4.4420482433\)
\(=\text{G}_2\text{E}_42.7672490264\)
\(=\text{G}_2\text{E}_3585.1255015569\)
\(=\text{G}_2\text{E}_21.3350623758\times10^{585}\)
\(=\text{J}3\$3\text{-}1\text{-}4\text{-}2\text{-}585\text{-}13359623758\)
\(=10\uparrow\uparrow\uparrow10\uparrow\uparrow\uparrow10^{10^{1.3350623758\times10^{585}}}\)

\(\color{white}{=}\text{J}6.2839822\)
\(=\text{K}_61.9230129106\)
\(=\text{K}_5\text{J}8.3755418047\)
\(=\text{K}_58.3755418047|10\)
\(=\text{K}_5\text{Hhe}3.6603486369\)
\(=\text{K}_5\text{Hh}_34.5745527187\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_43.7545052740\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_35.6820529178\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_54.8089794131\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_46.4413873071\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_3\text{G}_62.7630408587\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_3\text{G}_5\text{F}_25.7948321206\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_3\text{G}_5\text{F}\text{E}_56.2349377339\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_3\text{G}_5\text{F}\text{E}_41717662.1031952485\)
\(=\text{K}_5\text{Hh}_2\text{Hg}_3\text{Hf}_2\text{He}_4\text{H}_3\text{G}_5\text{F}\text{E}_31.2682219003\times10^{1717662}\)
\(=\text{L}6\text{-}1\text{-}8\$3\text{-}4\text{-}3\text{-}5\text{-}4\text{-}6\text{-}2\text{-}5\text{-}6\text{-}1717662\text{-}12682219003\)
\(=\underset{\Large{5}}{\underbrace{\left.\left.\underset{\Large{10}}{\underbrace{\begin{matrix}\underbrace{10\uparrow\cdots\uparrow10}\\\vdots\end{matrix}}}\right\}\cdots\right\}}}(10\uparrow^8)^2(10\uparrow^7)^3(10\uparrow^6)^2(10\uparrow^5)^4(10\uparrow^4)^3(10\uparrow\uparrow\uparrow)^510\uparrow\uparrow10^{10^{10^{1.2682219003\times10^{1717662}}}}\)

\(\color{white}{=}\text{M}2.1932032\)
\(=(1,2.1932032)|10\)
\(=\text{Le}2.7294380225\)
\(=\text{L}_25.3633732610\)
\(=\text{L}\text{K}_52.3087306101\)
\(=\text{L}\text{K}_4\text{J}_22.0357789065\)
\(=\text{L}\text{K}_4\text{J}2.0357789065|10\)
\(=\text{L}\text{K}_4\text{J}\text{G}2.1185483409\)
\(=\text{L}\text{K}_4\text{J}\text{F}_21.3138577311\)
\(=\text{L}\text{K}_4\text{J}\text{F}\text{E}2.0599549899\)
\(=\text{L}\text{K}_4\text{J}\text{F}114.8034633756\)
\(=\text{L}\text{K}_4\text{J}\text{E}_{114}6.3600916754\)
\(=\text{L}\text{K}_4\text{J}\text{E}_{113}2291351.2843418465\)
\(=\text{L}\text{K}_4\text{J}\text{E}_{112}1.9559208863\times10^{2291351}\)
\(=\text{M}2\$2\text{-}5\text{-}2\text{-}2\$2\text{-}1\text{-}2\text{-}114\text{-}6\text{-}2291351\text{-}19559208863\)
\(=\underset{\Large{\underset{\Large{4}}{\underbrace{\left.\left.\underset{\Large{10}}{\underbrace{\begin{matrix}\underbrace{10\uparrow\cdots\uparrow10}\\\vdots\end{matrix}}}\right\}\cdots\right\}}}\underset{\Large{(10\uparrow)^{112}1.9559208863\times10^{2291351}}}{\underbrace{10\uparrow\cdots\uparrow10}}}}{\underbrace{\left.\left.\underset{\Large{10}}{\underbrace{\begin{matrix}\underbrace{10\uparrow\cdots\uparrow10}\\\vdots\end{matrix}}}\right\}\cdots\right\}10}}\)